
J .  Fluid Mrch. (1991), vol. 223, p p ,  135-163 

Printed in Great Britain 
135 

Two-layer hydraulics : a functional approach 

By STUART B. DALZIEL 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW, UK 

(Received 15 June 1989 and in revised form 4 June 1990) 

A new approach for investigating two-layer hydraulic exchange flows in channels is 
introduced. The approach is based on the functional formalism of Gill (1977) and 
applied to the flow through a contraction in width and to flow over a simple sill. The 
sill geometry is an extension of that looked a t  by earlier workers, in particular 
Farmer & Armi (1986) who used a Froude-number-plane approach. In  the present 
paper a simple relationship between the composite Froude number and the hydraulic 
functional is derived, though the functional approach may also be applied to  channels 
where a Froude number is not readily defined. The ability to trace roots of this 
functional from one reservoir to the other is a prerequisite for the flow to be 
realizable. Two hydraulic transitions are required for the flow to be fully controlled 
and the exchange flow rate to be maximal. If only one hydraulic transition is present, 
the flow is governed by the conditions in one of the reservoirs and the exchange flow 
rate is found to be submaximal. The flow along a channel is found to be very sensitive 
to small departures from symmetry about a horizontal plane. The response of the 
interface to  the introduction of a net (barotropic) flow is found to  be a discontinuous 
function of the strength of the forcing for some range of sill heights. 

1. Introduction 
The study of two-layer hydraulics is important in a whole range of fluid flows, from 

thermally driven exchange flows through doorways to oceanic currents such as the 
flow through the Strait of Gibraltar (the density difference is provided by a difference 
in salinity between the Mediterranean Sea and the Atlantic Ocean). Despite the 
obvious need to understand these flows, in particular when the flow is hydraulically 
controlled (the exchange flow is then maximal),  there have been comparatively few 
investigations of this steady, nonlinear phenomenon. In  contrast the related single- 
layer flow has a large established body of literature describing and analysing all the 
different aspects of the flow. 

The work of Stommel & Farmer (1953) on overmixing and the exchange of salinity 
between an estuary and the open ocean prompted much of the more recent work in 
this area. Wood (1968, 1970) introduced a number of key ideas, the most notable 
being that two distinct (separate) hydraulic transitions may occur when there are 
two flowing layers. The most compete works to date are those by Armi and Farmer 
(Armi 1986; Armi & Farmer 1986; Farmer & Armi 1986). A thorough review of 
earlier attempts to analyse two-layer flows is given in Armi (1986). 

Utilizing a quasi-linear approach, Armi (1986) showed the relevance of the 
composite Froude number to such flows. Solutions for channels of rectangular cross- 
section and simple along-channel geometry were obtained using a formulation in the 
layer Froude-number plane. These results demonstrated a fundamental difference 
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between flow through a contraction and that over a sill ; earlier workers had viewed 
these two situations as equivalent (e.g. Mehrotra 1973). 

Armi & Farmer (1986) and Farmer & Armi (1986) expanded on the work of Armi 
(1986) to investigate a broader range of along-channel geometries. This work has 
been applied to the flow through the Strait of Gibraltar (Farmer & Armi 1986; Armi 
&, Farmer 1987, 1988) as an explanation of the observed internal flow features. 

The approach of Armi & Farmer is difficult to  apply to channels with complex 
along-channel geometries and is not appropriate for channels in which the layer and 
composite Froude numbers vary across the width (e.g. rotating channels, Dalzicl 
1990). I n  addition to being less general, the Froude-number-space formulation 
obscures the physical reasons why some flows may not be realized. 

This paper offers an alternative formulation of the two-layer hydraulic problem to 
illuminate more clearly the fundamental features of such flows. The new formulation 
is readily applicable to channels of non-rectangular cross-section (Dalziel 1988) and 
channels in rotating systems (Dalziel 1988, 1990). The formulation in this paper is 
based on the functional formalism expounded by Gill (1977) for hydraulic-type 
problems in his investigation of the effects of rotation on single-layer flows. This 
formalism has been shown to be equivalent to the quasi-linear approach for non- 
dissipative single-layer flows by Pratt  & Armi (1987). 

I n  $$2 and 3 we summarize the essential features of two-layer hydraulics, 
introducing the necessary equations and discussing how disturbances are com- 
municated along channels. In $4 we derive the two-layer hydraulic functional, giving 
details of its structure, the relationship with the Froude number, and how the 
functional may be used to solve two-layer exchange flows. The results of Armi (1986), 
Armi & Farmer (1986) and Farmer & Armi (1986) are confirmed in $$5 and 6 
(respectively), using the functional approach, before being extended in $6 to a 
broader range of along-channel geometries. This extension is essential to understand 
when the limits analysed by Farmer & Armi may be applied. The energetics of two- 
layer sill flow is also discussed, showing that such flows are necessarily dissipative. 
Finally, in $7 ,  the conditions giving rise to  maximal and submaximal exchange flows 
are detailed. 

2. Model geometry and equations 
Consider two large reservoirs connected by a channel of varying width and depth. 

One reservoir contains fluid of density p1 and the other of a lower density pz. The 
fluids are Boussinesq (0 < p1 -pz 4 t (p ,  + p 2 ) ) ,  the density difference driving an 
exchange flow along the channel. Following normal hydraulic practice, we shall 
assume that the flow is irrotational (except for thin vortex sheets a t  the interface ; the 
analysis for flows with vertical vorticity is similar, but beyond the scope of this 
paper) and incompressible. Viscous effects are assumed negligible, except for energy 
dissipation within internal hydraulic jumps and bores. Further, variations in the 
height of the interface between the two layers and variations in the channel geometry 
occur over lengthscales large compared with the depth of the channel. These 
assumptions enable us to apply the shallow-water approximation under which the 
pressure is hydrostatic within each layer. 

For later convenience we non-dimensionalize the equations with respect to the 
channel geometry a t  the shallowest section (x = x,, say). Suppose that at this section 
the depth a t  the deepest point across the channel is D ,  and maximum width at this 
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point is b,. For rectangular cross-sections D, is simply the depth and bm the width. 
We define 

( X > Y )  z t(D, g'); (X,Y)* = ~ z* = -, t* = -, 
bm ' D m  bm 

where the variables with a superscript asterisk are dimensionless and g' is the reduced 
gravity (9' = 2g(p, -p , ) / (p ,  +p , ) ) .  Note that the channel depth and width are also 
non-dimensionalised by D, and b, respectively. We shall utilize a right-handed 
coordinate system with the x-axis along the channel so that the lower layer has a 
positive velocity and the z-axis is in the vertically upward direction. The subscript 
i takes the value 1 for the lower layer and 2 for the upper layer. 

The shallow-water equations may be written in the form 

ah, a a 
-+-(hiUi)+-(hivi) = 0, 
at ax aY 

where the superscript asterisks have been dropped and h,, h, are the depths of the 
lower and upper layers respectively. The momentum equations in ( 2 )  may be 
integrated to yield Bernoulli's equation in the form 

a@. P 2 
G, = L+~(U;+V~)+"+-, 

at Pi Pl-Pz 
(3) 

where Gi, i = 1,2,  are constant. The Bernoulli potential, G,, is conserved by a 
material particle and @$ is a velocity potential (such that ui = V Q i ) .  Throughout 
most of this paper odattention will be confined to the final steady state. Thus we 
set a/at = 0 in ( 2 )  and ( 3 ) .  

As the channel geometry is slowly varying and the flow irrotational, all streamlines 
are relatively straight in the sense that ui 4 vi. This allows us to eliminate the 
pressure between GI and G, to write 

AG = G,-G, = ~ ( U ; - U : )  H + h  (4) 4 &?4 
where H = H(x,y) is the elevation of the channel floor abov datum and h = h(z ,y)  is 
the thickness of the lower layer. The total depth of the channel is D = D(x,y). Note 
that we do not restrict the shape of the channel cross-section at  this stage. For steady 
flow the difference AG will be constant everywhere (except across regions of 
dissipation such as hydraulic jumps). 

Suppose the lower layer occupies an area S, = S,(x,h) of the cross-section, and the 
upper layer S, = S,(x,h). From continuity for the layer flow rates (volume fluxes), 

qt = Si ui, ( 5 )  
are conserved. Provided that the channel has rigid boundaries, or at least a rigid-lid 
approximation is valid (external Froude number much smaller than unity), the total 
cross-sectional area of the channel at a given x, 

s = S ( x )  = s,+s,, (6) 
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is constant. For true exchange flows (qlp2 < 0) we define the exchange flow rate, q,  as 

and the net barotropic flow rate, Q ,  as 

For the purposes of this study we shall consider Q as an initially unknown parameter 
(to be determined) and Q as an independent (prescribed) paramcter. The reservoir 
conditions must be such that the net barotropic flow Q is provided by, for example, 
a difference in the free-surface heights between the two reservoirs. 

Q = 41-42 = Id + 14211 

Q = 41+42 = 1411- 1421. (8) . 

(7 )  

3. Information propagation 
As with the single-layer counterpart, information is propagated by long, small- 

amplitude gravity waves; for two-layer flows these waves are on the density 
interface. By analysing such waves modes in a channel of uniform rectangular cross- 
section (depth D )  with arbitrary velocities in the two layers (relative to a frame of 
reference fixed with respect to the channel), we may show that the two (dimensional) 
phase velocities (relative to the same frame of reference) are given by 

D 
c,>c, = 

(In our dimensionless system (9) holds with g' set to unity.) If C, and C, are of 
opposite signs, information is able to propagate in both directions and the flow is said 
to  be subcritical. In  contrast, if C, and C ,  are of the same sign, information about any 
disturbances is able to propagate in one direction only and the flow is supercritical. 
Note that there are two supercritical states (with the phase velocity vectors pointing 
towards the left or the right) and only one subcritical state. The necessity for two 
hydraulic transitions to change from one supercritical state to the other was first 
recognized by Wood (1968). 

The basic character of this information propagation is embodied within the 
definition of the composite Froude number. Traditionally this is expressed in terms 
of the dimensional layer Froude numbers as 

F2 = F;+Ft,  

which may more usefully be written as 

F 2 =  1+- h1+ h; c, c,. 
h, h, 9 

Thus the composite Froude number is a measure of whether the flow is subcritical or 
supercritical, though if the flow is supercritical, it  does not give any indication of the 
direction of information propagation. 

Consider the flow through a channel of varying cross-section. Suppose we know Q, 
pand AG a t  some point along the channel. We may trace the solution from this point' 
in both directions for subcritical flows as the small-amplitude waves are able to 
propagate any changes a t  this point in both directions. However, if the flow is 
supercritical, small changes in Q ,  Q or AG will only be propagated in one direction, 
and are thus unable to affect the flow in the other direction (unless the waves grow 
to finite amplitude). Somewhere along the channel there may be a smooth transition 
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from a subcritical flow to a supercritical flow with both phase velocities away from 
the subcritical region. Any disturbances will be swept out of the subcritical region. 
In  contrast, the transition to subcritical flow from supercritical flow with both phase 
velocities towards the subcritical region must be abrupt and take the form of a 
hydraulic jump ; propagation of the slower-moving wave will be reversed on entering 
thc subcritical region. The instability leading to the formation of the jump has been 
discussed by Pratt  (1984) for single-layer flows. 

Any subcritical region can therefore be said to control the flow provided any 
bounding supercritical regions have their phase velocities away from the subcritical 
region. We need consider only processes within subcritical regions of the flow: 
disturbances elsewhere are unable to propagate against the supercritical flow to 
influence the subcritical region. 

Flows that contain a subcritical region bounded on both sides by appropriate 
supercritical regions will be termed ful ly  controlled. If the flow is supercritical on only 
one side of the subcritical region, the flow is partially controlled. Flows that are 
subcritical everywhere are not controlled. Note that a hydraulic jump (which 
violates the basic assumptions) may form within a supercritical region without 
affecting the controlling subcritical region, provided that the amplitude of the jump 
is not too large. This provides the mechanism for matching a supercritical flow in the 
channel to  a subcritical flow within the reservoir. We shall return to the restrictions 
that this imposes on the interface height in the two reservoirs in $7.  

Long (1956) analysed the linear stability problem for long-wave disturbances to an 
inviscid shear flow between two layers bounded by rigid, horizontal plates. In terms 
of our present non-dimensional notation, he found the flow to be stable if 

(12) (ul - u2)2 < D. 

D lull2 - 2Dfhlull - [D(F2 - 1) -F2h] h 6 0. 

Noting that the product ulu2 is negativc for exchange flows, we may replace u2 with 
the composite Froude number from (10) and write 

For critical flow lull < Di and h E [OP] so (3) shows that the flow is never unstable. 
Marginal stability (( 13) equals zero) may occur if Dfu, = h. For F2 < 1 ,  the inequality 
of (13) holds for all values of u1 and h, so subcritical flows are always stable with 
respect to long-wave disturbances. The bounding supercritical flow may be unstable 

(13) 

if Diu, lies in the range 
h f [ (F2  - I )  (D- h)h]i, (14) 

though we note that the supercritical nature of the flow may wash such a 
disturbances a significant distance away from the subcritical region before they have 
grown to finite amplitude. We may thus consider the subcritical region as stable. 
Lawrence (1985) has considered in detail the instability in the equivalent problem 
with the two layers flowing in the same direction. 

4. Hydraulic functional 
4.1. Definition 

In  his work on single-layer hydraulics, Gill (1977) noted the similarity of a wide class 
of hydraulic-like problems, and showed that they all had a common mathematical 
structure. The present two-layer hydraulic problem is no exception, although 
utilizing Gill’s formalism is not as simple as for the single-layer flow. 

For two-layer flows we shall formulate a functional J which has the following 
properties : 
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(i) Configurations of the interface which satisfy the basic assumptions of 
conserving the Bernoulli potentials and volume flow rates of the two layers arc 
solutions to 

where the single dependent variable h depends on the along-channel coordinate x 
only through a set of geometric parameters uo,al,uz, ... . We shall treat the net 
barotropic flow rate Q as a prescribed parameter. The exchange flow rate p and 
constant Y arc parameters which select between the various conceivable flows. The 
constant '3 is similar to the constant on the right-hand side of Gill's equation (3.1). 
The physical significance of 9 depends on the form of J (  * ;h) and will be explained 
shortly. 

(ii) The functional J( - ;h) is multiple valued for some range of uo,ul,u,, ... in that 
there is more than one value of h satisfying (15). 

(iii) There is some sort of constriction in the sense that a t  some point along the 
channel 

J(ao,a1,aZ,***, QjpjY;h) = 0, (15) 

The functional J is a surface in (a,,a,,a,, . . . , Q,p,Y,h)-space. Control sections 
represent the transition from one sheet of the surface to another. Different sheets 
meet along lines defined by 

aJ/ah = 0. (17)  
Differentiation of (15) with respect to x shows that (aJ/ah) (dhldx) = -K along such 
lines. Unless K = 0, dh/dx will bc infinite and the solution will break down. Therefore 
K must be zero along lines where the solution sheets meet. Further differentiation of 
(15) demonstrates that  K = 0 must be a constriction rather than an expansion. 

The set of functional5 fulfilling the requirements for J is infinite; the relevant 
solutions to J = 0 describe the same unique flow for a givcn geometry and net flow, 
regardless of the form of J ,  so long as i t  conserves mass and Bernoulli potential. It 
is tempting to identify J with the exchange flow rate p to allow (17) to be interpreted 
as the maximal-exchange criterion often used in single-layer hydraulics and 
suggested by Whitehead, Leetmaa & Knox (1974) for two-layer flows. We note, 
however, that J should be single valued with respect to its parameters in that, for 
given a,,al,az, ...,Q,p, 99 and h, there is only one value of J .  Identifying q with J 
introduces some ambiguity through the necd to conserve the difference in the 
Bernoulli potentials (i.e. we would introducc the roots of a quadratic). 

As an alternative we propose a hydraulic functional of the form 

J(U~,U,,CZ,, ..., Q,p,Y;h) = Y-&u;-ui)-(H+h). (18) 
The requirement J(. ;h) = 0 is a statement of conservation of the difference of the 
Bernoulli potentials. Note that we are not able to determine 9 from the pressure 
heads in the reservoirs due to subcritical reservoir conditions requiring the formation 
of a hydraulic jump from the supercritical flow into the reservoir; the Bernoulli 
potentials are not conserved across such a jump. 

Differentiation of (18) with respect to x gives 
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which may be compared with the difference between the x-momentum equations for 
relatively straight flow in the two layers, viz. 

a au au, - a 
- (ul -u2) + u l A -  u2- - -- ( H +  h) ,  at ax ax ax 

to show that (aJ/ah) (dhldx) plays the same role as @ / a t )  (ul - u2), should this steady 
flow be disturbed. We may thus replace @ / a t )  (u1-u2) in (20) with (aJ/ah) (dhldx). 
The velocity gradients may be eliminated using the continuity equations. For small- 
amplitude travelling wave solutions we may write a/at = - C, a/ax, where C,, n = 
1,2, are the two phase velocities of such a wave, and so obtain the relationship 
between the phase velocity of small-amplitude gravity waves (relative to  the 
channel) and the slope aJ/ah of the hydraulic functional, viz. 

From the quadratic form of (21) wc may determine the product of the two phase 
velocities, CIC,, and utilize (1 1) to show the composite Froude number is related to 
the hydraulic functional by 

Thus the transition from one solution sheet to another corresponds to critical 
conditions (F2 = 1) .  

The direction of the phase velocities is given by the second term of (21) as 

D(Cl + G,) = ( D  - h)ul + hu,. (23) 

The numerically larger phase velocity will be in the same direction as the thinner, 
faster moving layer. For non-trivial solutions to (21) we may eliminate the ahlax 
terms and then differentiate the expression with respect to h to show that if both 
aJ/ah = 0 and a2J/ah2 = 0 then both phase velocities vanish. 

For given 2, Q ,  a a n d  9 there will, in general, be three solutions to J( - ;h) = 0 with 
real h. Two of these solutions will be supercritical (aJ/ah > 0) and one subcritical 
(aJ/ah < 0). The supercritical root with a value of h falling below the value for the 
subcritical root will have its phase velocities towards the left; the other supercritical 
root with h larger than that for the subcritical root will have its phase velocities 
towards the right. We shall distinguish these two supercritical roots as the left- 
directed and right-directed supercritical flows. 

Cross-channel variations in channel depth do not affect any of the above 
arguments. Thus this functional formulation may be applied to a channel of 
arbitrary cross-section (provided that the interface is continuous). Moreover, 
provided the flow remains relatively straight, cross-channel variations in the 
interface height and layer velocities (e.g. flows which are not irrotational or flows in 
rotating channels) can fit within this framework : the constant 9 may be a function 
of y (we only require 39/ax = 0). 

4.2 Rectangular cross-section 
For the remainder of this paper we shall confine our attention to the flow through 
channels of rectangular cross-section. Figure 1 shows the typical geometry for such 
a channel. In  our dimensionless system the channel depth D and width b are both 
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\ 1 . 
Frur~ss 1 .  Definition sketch of a channel with a rertangular cross-sertion. 

unity at the shallowest section. For convenience we shall write the height of the 
interface above the channel bottom as 

h ( x )  = ( * + A ( x ) )  W x ) ,  (24) 

and notc that d/dh = ,V1a/i3A. We shall call the dependent variable A = A ( x )  the 
interfuce hpight coeficient. 

The sectional areas, AS, arid S,, occupied by the two layers are simply 

s, = Db($+A) ,  s, = Db(*-A) .  (25) 

Eliminating u1 and u, from (18) using (5)-(8) and (25)  cnables us to write 

and its derivative with respect to A as 

(27) 
2 (a + 3.4 2 )  (p + Q' ) -A (3 + 4 4  2)  Qq- 4U3b2(i - A2)3 

($-A2)' 

If the position of one control section is x = x,: say, and the interface height 
coefficient at this section is A = A, ,  then we solve a J / a A  = 0 ( i s .  critical conditions) 
from (27) to  show that thc exchange flow rate is given by 

- - u, + (u; - 4u0 a,): q . =  
2u2 

crit (%a) 

where 
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FIGURE 2 .  Variations in the hydraulic functional for a fully eontrolled flow over a simple sill. The 
interface profile along the channel is shown, along with plots of the hydraulic functional at seven 
locations along the channel. For each plot of the functional the A-axis goes from -$ to $. The root 
of J = 0 giving the interface position shown is indicated by an arrow. Plots of J at sections ( a )  and 
(9 )  are identical owing t o  identical geometry. although the indicated root differs. Similarly for 
sections (6) and (f) ,  and ( e )  and ( e ) .  The two controls are positioned at sections (6) and (d ) .  

The values of D, b and A are those for x = x,. The subscript crit indicates that  the 
exchange flow rate gives critical conditions a t  the section. The constant Y may then 
be evaluated from J = 0. 

4.3. Featurea 

Figure 2 sketches how the hydraulic functional may vary along a channel containing 
a simple sill. The supercritical regions to either side of the sill allow matching on to 
the conditions within the reservoirs by means of hydraulic jumps; for the time being 
we shall ignore these jumps and concentrate on the region of flow where all the basic 
assumptions hold. 

At section (a ) ,  near the dense reservoir, the interface is close to the top of the 
channel. The hydraulic functional for this section is plotted above the channel; thc 
appropriate root to J = 0 is indicated by an arrow. Moving towards the base of the 
sill the form of the hydraulic functional changes in response to  the geometry. The 
left-directed supercritical (aJ/aA > 0) root of J = 0 (value of A larger than the 
subcritical root) moves towards smaller values of A and closer to  the subcritical root 
(dJ /aA  c 0). At section ( b )  (plotted below the channel) the subcritical and 
supercritical roots coincide giving critical conditions (aJ/aA = 0). The double root 
allows the flow to  pass from a supercritical branch to a subcritical branch of the 
solution. The non-zero phase velocity remains directed towards the left. Moving on 
towards the crest of the sill, the continued change in the geometry forces thc two 
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I I I I - 

FIQURE 3. Variations in the hydraulic functional for an unrealizable flow over a simple sill. The 
calculation assumed that both controls were positioned at the sill crest (section d ) .  The channel 
geometry is identical to that for figure 2. Again the A-axis ranges from -$ to $ for each plot of the 
functional. 

roots apart once more. At section (c) the flow is subcritical, the root moving closer 
to the second supercritical solution as shown on the appropriate plot above the 
channel. The sill crest (section d )  sees the subcritical root and the right-directed 
supercritical roots coincide. The flow is able to undergo a second hydraulic transition, 
allowing it to follow the right-directed supercritical root onward towards the light 
reservoir. 

The geometry at section ( e )  is identical to that a t  (c) and so the hydraulic 
functional takes the same form. The flow, however, now corresponds to the 
supercritical root with both phase velocities towards the light reservoir. Moving out 
into the light reservoir a t  positions ( f )  and ( 9 )  the relevant roots of J = 0 remain 
distinct, even though J = 0 has a double root a t  section (f ). The flow is not able to 
undergo any further hydraulic transitions. 

The important feature to note is that the interface height progresses smoothly 
along the channel from one supercritical root a t  the dense-reservoir end of the 
channel, to the other supercritical root a t  the light-reservoir end of the channel ; the 
flow is fully controlled with two hydraulic transitions. 

Figure 3 plots the hydraulic functional for the same channel as figure 2 but 
assumes that the two control sections coincide at the crest of the sill (the values of 
p and B differ from those of figure 2). While there is no difficulty tracing the right- 
directed supercritical solution from the sill crest towards the light reservoir, we are 
unable to trace the solution towards the dense reservoir as two of the roots to J = 0 
become complex. The remaining supercritical root has both phase velocities 
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FIGURE 4. The exchange flow rate required to produce critical conditions at the sill crest (qcr,t; 
geometry as for figures 2 and 3) as a function of the interface height coefficient (A,) at that point. 
The dashed part of the curve indicates configurations that cannot be traced towards the dense 
reservoir. 

towards the right of figure 3 and represents an unrealizable flow to the left of the sill 
crest due to critical conditions at the crest (see sections a%). Note, however, that  in 
the expanding region towards the dense reservoir J = 0 regains three real roots. Thus 
if we were to look only a t  the sill crest and in the dense reservoir we would miss the 
inability for the flow to be traced. 

In figure 4 we plot how the exchange flow rate varies as a function of A at the sill 
crest for all flows having critical conditions at  this point and no net flow along the 
channel (plots for Q + 0 have a similar form with a single turning point though are 
skewed away from symmetry about A = 0). The curve is simply the solution p = pCrit 
to BJ/aA = 0 a t  the sill crest (x = x,). Notice that critical conditions with A, = A(x 
= 2,) = 0 yields the largest value of qcrit ; however, as we have demonstrated, such 
a flow cannot be connected to the dense reservoir when a sill is present in the channel. 
The dashed portion of the curve is figure 4 indicates values of A ,  that cannot be 
connected to  the reservoirs for a channel with the geometry of figures 2 and 3 ; the 
solid part of the curve indicates values that can be traced towards both reservoirs. 

Fully controlled solutions correspond to the boundary of these two regions; if the 
value of A a t  the sill crest is any larger than that associated with the local minimum 
in J( - ; A )  then this turning point will rise above the A-axis at some location along the 
channel, leaving only one real solution (such as in figure 3). On the other hand, if the 
value of A a t  the sill crest is less than that a t  the boundary of these two regions, the 
local minimum will never be a solution to J(  - ;A)  = 0 and so the flow will not be able 
switch to the left-directed supercritical solution. Such flows are partially controlled 
(the flow is subcritical everywhere to the left of the sill crest) and may be considered 
submaximal in that they yield a lower value of qcrit than the fully controlled solution. 
The fully controlled flow is maximal in the sense that it yields the largest exchange 
flow rate of any realizable flow. We shall delay further discussion on submaximal or 
partially controlled solutions until 5 7. 

and Y so that the solution is 
traceable and able to be matched onto the conditions in both reservoirs. For fully 
controlled solutions we must determine the boundary between realizable and 
unrealizable flows. Searching over the full (q, Y) space and tracing the solution along 

The problem is how to determine the values of 
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the channel for each pair of and 3 would be prohibitive from a computational 
standpoint. In the next subsection we shall prcscnt an alternative approach to this 
problem. 

4.4 Solution process 

Flows which are not controlled arc of little interest as they represent idcntical 
conditions in the two reservoirs. Partial control allows the conditions within the two 
reservoirs to differ through a single hydraulic transition and the possibility of a 
hydraulic jump in one reservoir. Solution is straightforward : the subcritical flow 
must be matched onto the appropriate reservoir ; critical conditions then occur at 
some appropriate point along the channel. For the following two sections we shall 
focus our attention on the more interesting case of fully controlled flows. 

The aim of the solution process is to determine the quantities q and 9 yielding a 
continuous solution which may be traced from a supercritical flow into the dense 
reservoir, through two hydraulic transitions (one either side of a region of subcritical 
flow ; this region may be vanishingly small) and into a supercritical region leading 
towards the light reservoir. Rather than searching the entire ( q ,  3)  space, determining 
the values of q and 3 that fulfill the necessary criteria, it proves more convenient to 
search for the location of the two controls, utilizing (16) to give some indication of 
where to look. 

Consider a channel with the controls positioned at  x = x, and x = x,. Suppose the 
position x, is known. By assuming the other control is a t  x = x,, say, and requiring 
J (  - ; A )  = 0 and aJ/aA = 0 a t  both sections, we may determine the exchange flow rate 
required to give critical conditions at  both x, and x,, ignoring the geometry in the 
remainder of the channel. The constant 3 may be obtained simply from J = 0. If we 
were now to trace this solution along the channel, we would discover that there 
would only be one real root to J = 0 in the neighbourhood of x = x,. This root is 
supercritical with both phase velocities towards x,. This is an unstable situation as 
the slower moving long wave a t  x, would come to rest a t  2,. 

The closer x, is to x, the smaller the range of x over which there is only one real 
root. When x, = x, three real roots exist everywhere, though two (or all three) of 
them coincide a t  x, and 5,. The flow is on the boundary between realizable and 
unrealizable solutions to J (  - ; A )  = 0. The sections "T, and x, represent saddle points 
for the functional J :  aJ/aA = 0 and the constriction condition (equation (16)) which 
may be written as 

In  addition the solution with x, = x, yields the lowest exchange flow rate for any 
pair of ( x , , x , )  producing critical conditions a t  both x, and x, (without necessarily 
requiring the flow to exist elsewhere in the channel). We may prove this  by 
considering how the functional a t  x = x, responds to small changes in x,. Suppose one 
control is fixed a t  x = x, (say) and thc other a t  x = x, perturbed slightly from its 
original location. The functional at x = x, responds as 

(30) 
aJ dD aJ dH aJ db aJ dA i3J dq aJ d 9  ---+--+--+--+--+-- 
aD dx, aH dx, ab dx, aA dx, aqdx, a 3  dx,' 

which must vanish for the solution to J (  - ; A )  = 0 to be maintained a t  x = x,. We may 
eliminate the final term of (30), using the comparable expression at x = x,. Since the 
flow is critical a t  x = 2, we may put aJ/dA = 0. The first three terms of (30) must 
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vanish to satisfy the constriction condition (29) (this is effectively a statement that  
the flow must be realizable), reducing the expression to 

In  general the dependence of J on p will be different at x, and x,, so dq/dx, must 
vanish. The exchange flow rate is thercfore a stationary point with respect to  the 
location of the control x,. The second derivative d2J/dx2 may be used to  show that 
the realized exchange flow rate is the minimum. Repeating the analysis with x, and 
x, interchanged completes the proof. 

The realized exchange flow rate is a saddle point : fully controlled flow is maximal 
in the sense that a lower value of p corresponds to partial control, and minimal in the 
sense that critical conditions a t  x, and x, yield a lower value of q than critical 
conditions at any other pair sections (if the intervening geometry is ignored). 

Below we give an outline of an algorithm which may be used to  determine the fully 
controlled flow through any arbitrary along-channel geometry. 

(i) Guess the position of one of the control sections, x = x, (say). Frequently this 
will represent some geometric constriction in the channel (see later in this section). 

(ii) Determine Amax(x = x,), the interface height which maximizes qCrit(x = x,) 
(equation (28) with A = A ,  and the geometry set for x = x,). 

(iii) Guess the position of the second control section, x,. This need not be a t  a 
geometric feature in the channel. 

(iv) Determine Amax(x = x,). 
(v) Guess the interface height A ,  a t  x = 2,. If x, is closer to  the dense reservoir 

than x, then A ,  must be less than A,,,(x = x,). If x, is closer to  the light reservoir, 
then A ,  > A,,,(x = x,). 

(vi) Calculate the critical exchange flow rate q, = qCrit(A = A,)  and the value of Y 
to give J( - ;A, )  = 0. 

(vii) If x, is closer to the dense reservoir than x, then find the turning point 
aJ/aA = 0 at x = x, with A > Amax(x = x,), otherwise the turning point with 

(viii) Determine the value J ,  = J ( x  = x,) for the turning point calculated in step 

(ix) If J(. ;A, )  = 0 then go to  step (x) ;  if not, adjust A ,  and return t o  step (vi). 
(x) If p,, evaluated in step (vi), is the minimum for all values of x, then go to 

step (xi); if not, adjust x, and return to step (iv). 
(xi) If p, is the minimum for all values of x, then stop; if not, adjust x, and return 

to step (ii). 
For a large variety of channels the constriction equation (29) may be utilized to 

give some indication of the position of the control sections. If dD/dx, dH/dx and 
db/dx all vanish simultaneously, and are minimum values a t  a particular section, 
then one of the controls - the primary control x, - is a t  this section. The relatively 
simple along-channel geometries of this paper fall in this category with one control 
section always located at the crest of the sill, and so steps (i) and (xi) may be omitted. 
If the minima in channel depth and width do not coincide, i t  is still likely that a 
control section will be positioned a t  one or the other or both of these geometric 
constrictions, simplifying the search associated with step (xi), 

The position of the second or virtual control may be more difficult to  find. For some 
channels i t  will be a t  a second stationary point in the geometry. Alternatively, if 

A < Amax(x = x,). 

(vii). 
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there is a net barotropic flow through the channel, the virtual control may be 
positioned upstream, with respect to  the net flow, of the primary control in a region 
of channel possessing no geometric constriction. Under these circumstances it is a 
combination of the geometric d .  /dx and aJ/a- terms in (29) which give the functional 
a constriction. 

Our nomenclature, primary and virtual controls, has been introduced to ease the 
identification of the mechanisms positioning the two controls. The primary control 
will be positioned a t  some geometric constriction ; for all channels dealt with in this 
paper it will be positioned at the sill crest. The virtual control may be positioned a t  
some secondary geometric constriction, in which case it will be called an exit or foot 
control, or a t  some other point along the channel which has no remarkable geometric 
features. 

Differentiation of (27) with respect to  A shows that, for critical conditions, aq/aA 
vanishes when a2J/aA2 = 0. Thus A,,, corresponds to the three roots of J ( -  ; A )  = 0 
coinciding. Furthermore, a t  a given section the turning points in J must lie on 
opposite sides of A,,,, regardless of the values of q and ’3. It is straightforward to 
show that 

A,,, = &/(u>b) .  

In  the next section we shall apply thc hydraulic formulation to flows through 
channels of constant depth. 

5. Channels of constant depth 
Channels of rectangular cross-section with a constant depth (and bottom elevation : 

H = 1 -D ,  say) but varying width are the most straightforward to analyse and have 
been studied by Armi (1986) and Armi & Farmer (1986). The purpose of this section 
is to illustrate and confirm the present functional approach using this well-known 
problem. 

As along-channel lengthscales are of no importance (i.e. provided they are much 
greater than the width or depth), we can consider the geometry as symmetric about 
the narrowest section (x = 0, say). If there is no net flow along the channel, we could 
appeal to this symmetry to show that the controlled flow must be antisymmetric 
with both controls coinciding at the contraction (the narrowest section). We shall 
show how this fits in with the functional approach before looking a t  the effect of a 
net flow. 

When the channel depth and bottom elevation are constant, the constriction 
equation (29) reduces to  

aJ db 
ab dx’ 

K = - -  

which vanishes when dbldx = 0 (the contraction) and/or 

(33) 

I n  the absence of net forcing (Q = 0) the condition in (34) requires A = 0. Suppose for 
the moment that the controls are both positioned a t  x = x a .  We know that the 
controls must coincide as aJli3b = 0 requires A = A,  = A,,, = 0, which represents a 
triple root of J = 0. Setting A = 0 in (28) and the geometry to that of section x,, we 
may show that the exchange flow rate associated with this position of the two 

(35) 
controls is q =L@b a a’ 
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For the exchange flow rate to be minimized (with respect to the position of the 
controls), (35) clearly requires the controls to be at the contraction. We may 
demonstrate the need to minimize q by considering the behaviour of the turning 
points in J. Setting (27) to zero and utilizing (35) allows us to show that turning 
points in J are located where A is a solution of 

As - 1J4 + (3/16) (1 + ?)A2 - ( 1/64) (1 - 7) = 0, (36) 

and y = (b , /b)2.  Differentiation of (36) with respect to y shows that these turning 
points shift with the channel width ratio as 

Now a t  x = xa, A = 0 and y = 1 so iU2/i3y = -8. Thus if y were to increase (i.e. b 
become less than 6,) away from the control, turning points in J would cease to exist 
(A2 < 0). To complete the proof we note that a complete solution of (21) with no 
turning points yields imaginary phase velocities (the real part vanishes) and so the 
flow is unstable with the instabilities unable to propagate away. Thus the controls 
must be positioned at the contraction so that y is never greater than unity. 

The introduction of a net barotropic flow through the channel breaks the inherent 
symmetry, and so we no longer expect both controls to be a t  the contraction. The 
primary control remains fixed at the Contraction db/dx = 0, while the position of the 
virtual control is set by the aJ/ab vanishing in (34). Solving for A ,  noting that A must 
remain finite as Q + 0, we find the relevant solution is A = A ,  where 

A,  = tQ/q. (38) 
Note that (38) is independent of x. Thus we are able to assert that a t  x = x, = 0 (the 
primary control a t  the contraction) there is a supercritical root with A = A ,  in 
addition to the critical root with A = A,. Solving J(A = A,) = 0 ,  J ( A  = A , )  = 0 and 
aJ/aA(A = A,)  = 0 simultaneously allows us to determine A,, '3 and q. Subsequent 
solution of aJ/i?A = 0 (with A = A,) for the geometry at the virtual control will give 
us the position of the virtual control. Since IA,I is greater than lArnax1 of (32) (they 
both take the same sign), the virtual control will always be positioned upstream, with 
respect to the net flow, of the primary control. At the contraction A ,  must therefore 
be closer to zero than A,,,, though will also take the same sign as A,,,. 

As the net forcing is increased, both IAJ and IA,I will increase. Eventually IQI will 
reach some value IQI = IQtl < Dib, for which IAJ = t and the corresponding layer 
vanishes. Solving the necessary equations (IQI = q alongside J(  . ; A )  = 0 and critical 
conditions a t  the contraction) reveals that 

IQtI = (m%, (39) 

at which point IA,I = Q and 6 ,  + CCI. If the strength of the net forcing is increased any 
further, the virtual control disappears and the flow becomes a single-layer flow with 
an overlying (Q > 0) or underlying (Q < 0) passive layer. The unique control is at the 
contraction, where the interface is related to the net flow by 

Q2 = D:b,(++IAc1)3. (40) 

The flow is subcritical upstream and supercritical downstream of this point. If [&I 
increases past Dib, the flow is simply that through a duct (Armi & Farmer 1986) on 
the upstream side of the contraction, though it may regain a passive second layer 
downstream of the contraction. 
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FIQURE 5 .  The effect of net barotropic forcing on the flow rates through a channel of constant 

depth. 
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FIGURE 6. The effect of net barotropic forcing (&) on the flow through a channel of constant depth. 
Interface height coefficients a t  the contraction (A, )  and virtual control (A,) are plotted as solid 
lines. The dashed line is the width a t  the virtual control (b , )  for I&I < ($, and the width of the front 
after stagnation of one layer when I&[ > (Q)'. 

Figures 5 and 6 show how the flow through this channel (D = D, = 1 and b, = 1 
from our non-dimensionalization) varies as a result of net barotropic forcing. Notice 
in figure 5 the vanishing of q1 for Q < -0.5443 (i.e. - ($), and of qz for Q > 0.5443. 
This corresponds to b,+ co, IA,I++Q and IA,I+kt in figure 6. 

These results are identical to those obtained by Armi & Farmer (1986) using a 
Froude-number-plane formulation of the problem. The advantages of the functional 
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approach do not become apparent until we consider morc complex geometries, such 
as the flow over a simple sill of arbitrary height ; this problem is analysed in the next 
section. 

6. Simple sills 

6.1. No net $ow 
As pointed out by Armi (1986) and subsequently Farmer & Armi (1986), two-layer 

flow over a sill rising from infinite depth differs in a fundamental manner from flow 
through a contraction in width. The asymmetry of the basic geometry does not allow 
antisymmetric solutions. The geometry we shall use for this and the following section 
is outlined in figure 7. In  such a geometry, variations in the channel depth are felt 
more strongly by the lower layer than the upper layer. The geometry presented here 
differs from that of Armi (1986) and Farmer & Armi (1986) in that the depth away 
from the sill crest, where the channel begins to increase in width, is finite (cf. Armi 
1986, and Farmer & Armi 1986, had D, = GO). It is important to  consider sills rising 
from finite depths (D,) in order to understand when the limits of the constant-depth 
channel and the sill rising from infinite depth may be applied, and to appreciate fully 
the physical differences between channels of constant depth and sills. Moreover, a 
number of important features of the flow are missed if only the limits are considered. 

The x-scale is included in figure 7 as a means of identifying the various geometric 
features. As with all steady hydraulic problems, the along-channel lengthscale enters 
the problem only parametrically through the variations in geometry. 

In the absence of net barotropic flow a na'ive application of the maximal exchange 
hypothesis would require both controls a t  the sill crest with A = 0. In  $4.3 we showed 
that while it is possible to  trace such a solution towards the light reservoir, any 
attempt to do so towards the dense reservoir fails as the subcritical and appropriate 
supercritical roots vanish. 

The constriction requirement for this channel may be written as 
! 

since H = const -D. Notice that both dbldx and dDldx vanish at x = - 1,0,1,  so 
these three locations are prime candidates for hydraulic control. When 1x1 > 1, dD/dx 
vanishes although dbldx remains non-zero, and so any further controls in these 
regions would be due to aJlab = 0. 

First consider channels with no net flow (Q = 0). We showed in the previous 
section that aJ/ab = 0 is unable to introduce any controls away from the section 
with smallest Dib if Q = 0, thus there will not be any controls outside the region 
ZE[- 1 , 1 ] .  For 0 < 1x1 < 1 to give a control, (41) may be applied to (26) giving 

Eliminating $ from (42) using (28) yields a quadratic in A with no real roots. Hence 
(42) has no real roots. Thus there are only six possible combinations of the positions 
of the control sections, namely 

(43) (xc, 5") E m  01, (0, - I ) ,  ( - 1,  - 11, ( - 1711, (1  > 1)).  
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FIGURE 7. Schematic diagram of a simple sill. Top : elevation ; bottom : plan view. 

Some of these may be eliminated immediately : the ( 0 , O )  solution has been shown to 
be invalid (54.3), while the ( -  1, - l ) ,  ( -  1 , l )  and ( 1 , l )  solutions are equivalent, all 
with a greater total depth (and hence (r3 than the ( 0 , O )  solution. 

The two remaining solutions differ through the need for the interface to slope down 
towards the lighter reservoir. The primary control is given by x, = 0. If x, = - 1 then 
A ,  > 0, while x, = 1 would reverse the inequality. Unfortunately it is not possible 
obtain an explicit solution for A ,  and A ,  for arbitrary value of D,. We are, however, 
able to determine the behaviour in the limits D,  + D, = 1 and D, + co. 

I n  the D, + 1 limit we put 
D, = 1 +€3, (44) 

FIGURE 8. Interface height coefficients at the sill crest (A, )  and the virtual (foot) control (A,)  as a 
function of the channel depth away from the sill (Dw).  Solid lines indicate the exact solution ; long 
dashes the D, + 1 asymptotic expansion ; short dashes the D, + cc asymptotic expansion. 
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FIGURE 9. Variations in the exchange flow rate over a simple sill as a function of the channel depth 
away from the sill (DJ. The solid line indicates the exact solution; long dashes the D, + 1 
asymptotic expansion ; short dashes the D, + 03 asymptotic expansion. 

with E + O ,  and find 
A,  - - & + + ' + O ( E ~ ) ,  

which places the virtual control at  the foot of the sill on the dense reservoir side 
(2, = - 1). Similarly for the very high sill, D,  + 00, we can show 

(46) I A ,  - - 0.12544, 

A ,  - i-0.351O4/Dw, 

ij - 0.41598. 

Again x, = - 1. The height of the interface above the datum at the virtual (foot) 
control is independent of the depth of the channel a t  that section in the asymptotic 
limit. 

For general D, the value of A ,  will lie between zero and A,, =A, (D ,  = 00)  

= -0.12544, while A ,  will be bounded between zero and ~-0.35104/0,. Figures 8 
and 9 show plots of the exact solutions (evaluated numerically) for A,, A ,  and q, 
along with the asymptotic solutions from (45) and (46). It is clear from both plots 
that most of the changes in the flow are associated with only a small increase in the 
depth of the channel away from the sill crest. If the channel deepens by around 25 YO 
away from the crest A ,  is within approximately 17% of its D,+m value; the 
exchange flow rate takes somewhat longer to approach its large D,  asymptotic value. 

Note how well (45) matches the exact value for A ,  even for D, much greater than 
that for which it is formally valid. The deviation is less than 10% for D, between 1 
and 2.5, by which point the true value of A ,  is within 3 YO of its large D,  asymptotic 
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value. Unfortunately both the interface height coefficient a t  the virtual (foot) control 
and the exchange flow rate are not such good fits. Howcvcr, if the asymptotic value 
for A ,  is used in ( 2 8 ) ,  rather than an asymptotic approximation to this equation, a 
more accurate value for p may be obtained. 

The hydraulic results are in agreement with Armi & Farmer (1986) who looked at  
channels of constant depth (U,  = 1 )  and Farmer & Armi (1986) who investigated sills 
whose depth went to infinity (Dw+ CO) before widening. They did not consider 
intermediate channels with the sill rising from finite depth. We have shown here that 
the D, + 00 limit is a good model if D, is greater than around 1.5, and that the 
constant-depth model should be applied with caution as small departures from 
constant depth lead to a relatively large response by the flow. 

6.2.  Net $ow 

The response to net flow of controlled flow over a simple sill is more complicated than 
that through a channel of constant depth. Depending on the height of the sill and the 
strength of the forcing, the flow may behave like either the unforced flow over a 
simple sill or the forced flow through a channel of constant depth. The feature which 
distinguishes these two types of behaviour is the position of the virtual control. We 
shall use the term contraction-like behaviour to describe flows in which the virtual 
control is upstream (with respect to the net barotropic flow) of the sill crest, 
positioned somewhere in the expanding region of the channel. Sill-like behaviour has 
the virtual control located as a foot (exit) control a t  x = - 1 on figure 7,  as would be 
the case if there were no net flow. The solution to K = 0 at the virtual control is due 
to the aJ/ab term vanishing for contraction-like behaviour, and both db/dx and 
dD/dx vanishing for sill-like behaviour. A third type of behaviour, coincident 
behaviour, is also possible ; this will be explained in more detail later. 

Numerical evaluation of the hydraulic solutions is necessary except when the 
forcing is sufficiently strong to bring one or the other of the layers to rest. Calculation 
of these values may be carried out by putting Q = +pand A ,  = ,t into (26)  and (28)  
and equating for the two control sections. For Q > 0 the upper layer is brought to 
rest a t  the same net forcing, Q = Qt = (2D,/3) tbc,  independently of the value of D,. 
The virtual control is positioned out in the dense reservoir where b, = 03. At the crest 
A ,  = +. Thus regardless of the value of D ,  the channel will exhibit contraction-like 
behaviour if the net flow is sufficiently strong. 

When the forcing is from the light reservoir ( Q  < 0),  the lower layer is first brought 
to rest when Q = -(Z$,)fb,, corresponding to A ,  = g-iD, provided I), < z$,. 
Under these conditions the flow exhibits contraction-like behaviour with the front 
forming at  the virtual control with b, = 00. In  contrast, if D ,  2 zj,, the lower layer 
will vanish a t  the sill crest beforc the front could form in the light reservoir. Thus 
we see coincident behaviour where thc front forms at  the sill crest with the 
primary and virtual controls coinciding a t  that point. The forcing required is 
Q = -Dib, = -p max. 

As the flow demonstrates sill-like behaviour when Q = 0, if either contraction-like 
or coincident behaviour is exhibited when one of the layers is brought to rest, a t  some 
value of the net forcing there must be a t  least one transition from one type of 
behaviour to another. The flow requires the exchange flow rate to be a continuous 
function of Q ,  and hence will remain continuous over such a transition. In contrast 
the position of the virtual control need not be a continuous function of Q, and so the 
configuration of the interface may show a sudden change if the virtual control were 
to jump from one side of the primary control to the other. 
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FIQURE 10. The effect of net barotropic forcing on the flow rates over a simple sill. Solid lines for 
D, = 1 ; long dashes for D,  = 1.1; dot-dash for D, = 1.5. The exchange flow rate, if the two controls 
were to coincide a t  the sill crest, is plotted also (dotted line). 
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FIGURE 11. Variations in the interface height coefficient at the sill crest (Ac,  solid lines) and virtual 
control (Av, dashed lines) as a function of the net barotropic forcing. The value of D, (sill geometry) 
is marked on the A, curves. Transitions from contraction-like to sill-like behaviour (for Q c 0) are 
shown by vertical dashed lines. For Q > 0 the transitions correspond to sudden changes in aAV/aQ. 

Q 

Figure 10 shows how the exchange flow rate varies with the net barotropic forcing 
for a number of different values of D,. Notice the transition from sill-like to 
contraction-like behaviour for Q < 0 with D,  = 1.1 (dashed lines) results in a sharp 
change in the slope of the flow rates. This is to be expected as p is the envelope of 
solutions with the virtual control a t  x, = - 1 (sill-like) and those with x, > 1 
(contraction-like). The discontinuity in @/-/a9 does not occur for the transition from 

6 FLM 223 
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FIQURE 12. Phase diagram for a simple sill showing the relationship between Q and D, for the 
transition from contraction-like (below D, curve) to sill-like (above D, curve) behaviour. The width 
a t  the virtual control for the contraction-like solution, a t  this transition, is also plotted (b,  curve). 
Solid lines for Q < 0 indicate that the transition causes a jump in the values of A ,  and A, ;  dashed 
lines for Q > 0 indicate that no such jump occurs. 
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sill-like to contraction-like behaviour for Q > 0. The virtual control remains at 
x = - 1 until Q reaches some threshold value for which aJ/ab vanishes a t  x = - 1. 
Increasing Q further allows x, to move out from x = - 1 towards the denser reservoir. 
For comparison qma,, the value Q would take if both controls were at  the sill crest, 
is also shown in figure 10 (dotted line). For D, = 1.5 (dot-dash line), q = qmax when 
Q = - 1 and the transition from sill-like to coincident behaviour occurs with both 
controls positioned a t  the crest of the sill. 

The height coefficients a t  the primary (solid lines) and virtual (dashed lines) 
controls are shown in figure 11 as a function of the net barotropic forcing for a 
number of different values of D,. Notice the discontinuities in both A ,  and A ,  a t  the 
transition from sill-like to contraction-like behaviour for Q < 0. Even though the 
exchange flow rate is a continuous function of the net forcing, the interface profile is 
not. Some care should be exercised in considering the discontinuity in A ,  as a 
significant portion of this is due to the associated jump in x, from x, = - 1 to x, > 1. 
The primary control coefficient A ,  is always evaluated in the same position and so 
gives a better indication of the overall jump in the interface configuration associated 
with a change in the net forcing. There is no jump in A ,  for the transition from sill- 
like to coincident behaviour. The transition to contraction-like behaviour for Q > 0 
is marked by a sharp change in aA,/aQ, corresponding to x, becoming a varying 
function of Q ,  though the changes in A ,  remain smooth. 

Figure 12 is a phase diagram for the flow over a simple sill showing the relationship 
between D,  and Q a t  which the transition from sill-like to contraction-like behaviour 
occurs. The corresponding width at the virtual control (for the contraction-like 
branch) is also plotted. The corresponding values of the interface height coefficients 
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are shown in figure 13. For Q < 0 the values of A, and A, are given for both types 
of behaviour. The curves are shown dashed for Q > 0 where there is no jump 
associated with the transition. 

In the limits D,  = 1 and D,  = 00, the present analysis reproduces the results of 
Farmer & Armi (1986). The results for finite sill heights and transitions in the 
behaviour of the flow are new. 

6-2 
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0 

- 

I I I 

FIGURE 13. Changes in the interface height coefficients at the transition point. The channel is a 
simple sill with D, such that for the given value of Q the flow is a t  the transition between the types 
of behaviour. Thus the difference between curves (i) and (iii) and between (ii) and (iv) represent the 
jump in the interface height due to the transition from sill-like to contraction-like behaviour. For 
Q > 0 (shown dashed) there is no jump. 

FIQURE 14. Dissipation coefficient (p) for the flow over a sill as a function of the sill geometry 
(Dw). Set-up is from rest. 
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6.3. Dissipation 
Some early workers in two-layer hydraulics used energy conservation arguments to 
determine the flow along a channel of uniform cross-section (e.g. Yih 1965, p. 136). 
They stated that the rate at which the kinetic energy of the mean motion increases 
(8,) is equal to the rate at which potential energy is released (8J for a mutual 
intrusion along a channel. Subsequently other authors (e.g. Whitehead et al. 1974) 
have attempted to apply this to more general channel flows. It is therefore of interest 
to determine whether or not similar arguments may be applied to the set-up from 
rest of two-layer flows over sills. 

In  this analysis we shall consider only situations in which there is no net flow. The 
simplest channel geometry containing the essential features of the hydraulically 
controlled flow over a sill is one with D ( x )  = D, for x < x, and D ( x )  = 1 for 
x > x, ( x ,  < x,). The depth of the channel decreases between x ,  and x ,  in a smooth, 
monotonic manner. Suppose that initially the fluid is a t  rest with a barrier dividing 
the dense and light fluids within the channel. At t = 0 the barrier is removed and the 
interface adjusts itself. Sometime after the flow has established, we may calculate the 
rate of increase in the kinetic energy and decrease in the potential energy from the 
conditions a t  x ,  and x,. In  terms of the interface height coefficients a t  the primary 
and virtual (foot) controls, we define 

When p = 1 there is no dissipation; p < 1 represents dissipation during the set-up 
process and continued dissipation at  any propagating head of the flow or hydraulic 
jumps in reservoirs. As the flow over a sill is controlled at x ,  and xv, we may use the 
hydraulic solutions to determine p. The resultant value of p is plotted in figure 14 as 
a function of D,. When D, = 1 the coefficient p is unity, indicating that the flow is 
energy conserving. For D, > 1, p is less than unity, demonstrating that dissipation 
or radiation of energy by waves must occur during the set-up process from dam break 
(and a wide variety of other initial conditions). In the limit as D, + CQ, ,u+0.6623. 

Only in the case of a channel with symmetry about a horizontal plane is it possible 
to equate the rate of gain of kinetic energy with the rate of release of potential energy 
(y  = 1). Similar arguments apply to the adjustment process from any arbitrary 
initial state, or to channels of constant depth when Q + 0. 

7. Partial control 
This section looks briefly a t  what happens when hydraulic control is lost a t  one of 

the control sections. Gill (1977) reviewed single-layer hydraulic theory and showed 
that over a wide range of conditions the surface height in the downstream reservoir 
could only be matched onto by the formation of a hydraulic jump in the supercritical 
region of the flow. Only if the surface height was equal to that associated with 
subcritical flow into the reservoir would there be a smooth transition from upstream 
to downstream reservoirs. In such a situation the flow would be subcritical 
everywhere. 

For two-layer hydraulics the situation is essentially similar, although the addition 
of a second supercritical solution branch makes the picture a little more complex. 
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FIQURE 15. Interface profiles for flow through a channel of constant depth. The heavy lines denote 
the fully controlled (maximal) solution and its associated subcritical root. Light lines represent 
submaximal flows. Continuous lines indicate supercritical solution branches and dashed lines 
subcritical branches. See text for more details. 

The statement by Armi & Farmer (1986) that the interface height in the reservoirs 
cannot be on the wrong side (i.e. lower for the dense reservoir or higher for the light 
reservoir) of the interface height at the virtual control is correct although may be a 
little confusing. For this present discussion we shall assume that the dense reservoir 
(the reservoir in which the interface height H +  h is greater) is to the left. While our 
discussion will be confined to channels of constant depth and simple sills without any 
net flow, more complex geometries and net flow may be treated in a manner similar 
to the flow over a simple sill. 

Solution for a flow that is subcritical everywhere is trivial in the geometries we are 
considering. The inherent symmetry (with respect to x) of the channel and the unique 
subcritical solution to J = 0 requires the interface height in the two reservoirs to be 
identical. There is no potential energy to drive a flow and so the fluid will be 
motionless everywhere. Purely subcritical uncontrolled solutions therefore have little 
relevance to real flows. Any difference in interface height will introduce one or more 
hydraulic transitions. 

Figure 15 shows a range of possible interface profiles, in a channel of constant 
depth, for a range of different reservoir conditions. Solid lines represent supercritical 
solution branches and dashed lines subcritical branches. Heavy lines represent the 
unique fully controlled (maximal) solution and its associated subcritical root. All 
interface profiles have a hydraulic transition at  the contraction. 

If the interface height in the left-hand (dense) reservoir is above the half-depth 
point of the channel, then it may only be matched onto from the supercritical branch 
of the flow by a hydraulic jump. There are no subcritical flows -other than those 
that are subcritical everywhere - able to match onto such reservoir conditions. 
Similtbrly, if the interface height in the right-hand (light) reservoir is below the half- 
depth poiht of the channel, then a hydraulic jump is required to match onto it from 
the sdpetcritical flow into it .  If the hydraulic jump is induced by friction rather than 
the level of the interface in the reservoir, the fluid may undergo a number of further 
hydraulic transitions and jumps before entering the reservoir. 

An interface height in the dense reservoir above the half-depth point and in the 
light reservoir below the half-depth point can only be matched onto by a fully 
controlled flow with two (coincident) hydraulic transitions at the contraction (heavy 
continuous line in figure 15). In contrast, if the level of the interface in the dense 
reservoir lies below the half-height point (i.e. the subcritical solution branch 
associated with the fully controlled flow ; heavy dashed line in figure 15), a subcritical 
solution exists which is able to match the flow onto the conditions in the dense 
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FIGURE 16. Interface profiles for flow over a simple sill. The heavy lines denote the fully controlled 
(maximal) solution and its associated subcritical root. Light lines represent sub maximal flows. 
Continuous lines indicate supercritical solution branches and dashed lines subcritical branches. See 
text for more details. 

reservoir. This solution has a single hydraulic transition at the contraction and may 
match onto the conditions within the light reservoir through a hydraulic jump (light 
lines in figure 15). Similarly, if the interface height in the light reservoir is above the 
half-height point the flow is subcritical to  the right of the contraction and 
supercritical to the left. A jump may then form to match onto the dense reservoir. 

In  figure 4 we plotted how the exchange flow rate for critical conditions varied as 
a function of A a t  any section (the discussion in $4.3 was for a sill but the shape of 
the curve applies equally to  any along-channel geometry). Since the flow is critical 
a t  the contraction for all the solutions plotted in figure 15, the curve of figure 4 shows 
how the exchange flow rate changes between the fully controlled and partially 
controlled solutions. The fully controlled solution has A ,  = 0 which maximizes qCrit. 
All the partially controlled solutions have (A,I > 0 and so the exchange flow is 
submaximal. 

The situation is more complicated when there is a net barotropic flow or variations 
in the channel depth. To illustrate this we shall consider no net flow over a sill. Figure 
16 plots interface profiles for a sill with a range of different reservoir conditions. As 
with the channel of constant depth, the crucial factor is the relationship between the 
height of the interface in the reservoirs and the position of the subcritical solution 
branch associated with the fully controlled flow (heavy dashed line). If the interface 
in the dense reservoir lies above this line, then the only way of matching a flow onto 
it is through a hydraulic jump. Similarly, if the interface in the light reservoir is 
below this line, then again a hydraulic jump is required. When both these conditions 
hold the flow is fully controlled with control sections a t  the sill crest and the foot of 
the sill on the side of the dense reservoir. 

If the interface in the dense reservoir were to fall below the associated subcritical 
branch of the fully controlled flow, the hydraulic control at the foot control would 
be flooded. The flow would then be subcritical everywhere to the left of the sill crest. 
The single hydraulic transition over the crest produces a supercritical flow towards 
the light reservoir which may subsequently be matched onto the reservoir conditions 
through a hydraulic jump. The value of A ,  is displaced further from A,,, at the sill 
crest by these partially controlled flows, reflecting their submaximal character. 

If the interface in the light reservoir is above the heavy dashed line in figure 16 
then the control a t  the sill crest is flooded. The flow everywhere to the right of the 
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(b) 

FIQURE 17. Variations in the hydraulic functional for a partially controlled flow over a simple sill. 
The geometry of the channel is identical to that in figures 2 and 3. The functional is plotted for the 
positions indicated above and below the channel. The A-axis of these plots goes from -$ to $. The 
appropriate root of J = 0 is indicated by an arrow. Critical conditions occur only at the sill crest 
(section d ) .  The flow is subcritical (W/M < 0) everywhere to the left of the crest. 

remaining control a t  the foot of the sill (on the dense reservoir side) is subcritical (the 
flow is, in fact, critical a t  the foot on the light reservoir side, but a hydraulic 
transition is unable to occur a t  this point). The transition then allows a supercritical 
flow into the dense reservoir to form which may be matched onto the reservoir 
through a hydraulic jump. The value of A ,  a t  the virtual (foot) control is displaced 
further from A,,, a t  this point, again showing the partially controlled solution to be 
submaximal (conditions are not critical a t  the sill crest so a value of A closer to A,,, 
at this point is of no consequence). 

The solution process for submaximal flows is to solve J = 0 simultaneously for the 
reservoir and a single control a t  which aJ/aA = 0. The position of this single control 
will be such that qis  minimal for all possible positions. Any other position would not 
allow the solution to be traced back towards the subcritical reservoir. Figure 17 
demonstrates how J ( - ; A )  varies along the channel for a partially controlled flow with 
the flow subcritical between the dense reservoir and the sill crest. This figure is the 
submaximal equivalent of figure 2 .  

8. Conclusions 
In this paper we have demonstrated the application of Gill’s (1977) functional 

formalism to two-layer exchange flows. The approach illuminates the requirements 
for the flow to be realizable more clearly than the Froude-number-plane formulation 
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used by previous authors. The functional framework provides a more flexible tool for 
handling hydraulic problems, particularly when the along-channel geometry is of a 
complex form (Dalziel 1988). 

Maximal exchange is confirmed for fully controlled flows. If only one hydraulic 
transition is present (partially controlled flow) then the exchange flow rate is 
submaximal. Submaximal flow will occur if the conditions in one of the reservoirs 
cannot be matched onto by a hydraulic jump from the fully controlled flow. 

The fully controlled flow has been shown to be very sensitive to small departures 
from symmetry about a horizontal plane in the along-channel geometry. For the 
simple sill geometry adopted in this paper, the asymmetry introduced by the sill 
causes the two controls to separate, one remaining a t  the sill crest and the other 
moving to the foot of the sill on the dense-reservoir side (when Q = 0). As the depth 
a t  the foot of the sill increases relative to that a t  the crest, the solution very rapidly 
approaches that for infinite depth at  the foot of the sill. If the difference is around 
50% of the depth at the crest, then the position of the interface and the strength of 
the exchange flow rate are within 10% of their values for an infinitely high sill. The 
displacement of the interface from the mid-depth point a t  the crest is around 13% 
of the channel depth and the exchange flow rate is reduced by around 17%, whed 
there is no net, flow, compared with a channel without variations in the depth. 
Farmer & Armi’s (1986) use of the D,  + co limit is therefore valid for many real flows. 
However, the D,  = D, limit should be applied with caution as only small departures 
from constant depth produce quite large differences in the flow. 

I n  the case of cold air intruding into a warm room, the position of the interface 
between warm and cold air will be displaced upward from mid-door height if the 
height of the doorway is less than the ceiling height within the room. If the doorway 
is less than around 75% the height of the ceiling, the interface will be displabed 
upwards by around Q of the height of the doorway (in the absence of a net flow). While 
this rough analysis assumes that there are two homogeneous layers arid negligible 
vertical velocities (neither of which is strictly true for real flow through a doorway), 
it never the less gives a qualitative description of the observed behaviour (Steckler, 
Baum & Quintiere 1984; Dalziel 1988; Dalziel & Lane-Serff 1990). 

when a net barotropic flow is added to the flow over a simple sill some novel 
features have been found. If the net flow is sufficiently weak, the flow behaves much 
like that with Q = 0, although the interface is displaced upward (Q > 0) or downward 
(Q t 0). The controls are positioned a t  the sill crest and the foot on the dense 
reservoir side of the sill. However if the net flow is sufficiently strong, the channel 
may start to behave more like a contraction with Q =+ 0:  the effect of the depth 
variations are swamped by the varidtiohs in the width of the bounding channel with 
the virtual control moving into the eftpanding region away from the sill. Whether 
this behaviour occurs depends on the strength and direction of the net forcing and 
the depth away from the crest of the sill. For Q < 0 there is a jump in the position 
of the interface associated with the transition from sill-like to contraction-like 
behaviour, though this will only occur if the depth away from the crest is less than 
1$ times the depth a t  the crest. If the depth away from the crest is greater than this 
and Q = - ( ~ , ) ~ g ’ ~ b , ,  the lower layer is brought to rest with both controls at the 
crest of the sill; there is no jump in the interface profile associated with the transition 
to this behaviour from sill-like behaviour a t  smaller IQI. The transition in behaviour 
for Q > 0 will always occur if Q is sufficiently strong, though in this case there is no 
corresponding jump in the interface profile. 

Finally, the strengths of the hydraulic functional are not confined to rectangular 
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cross-sections or non-rotating channels. The derivation, features and solution process 
outlined in $4 may be applied equally to channels of non-rectangular cross-sections 
and rotating channels. The relationship between the composite Froude number and 
J proves to be a particularly useful tool for rotating channels where defining an 
appropriate Froude number is not straightforward. Non-rectangular cross-sections 
and rotating channels are covered by Dalziel (1988, 1990). 

This work was undertaken while I was in receipt of a Commonwealth Scholarship 
as a postgraduate student a t  the University of Cambridge. I am grateful to  the 
Association of Commonwealth Universities for this opportunity, and to my 
supervisor over this time, Dr Paul Linden, for his continued help and guidance. 
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